Opportunities and Challenges for Simulation at the ATF

Nathan M. Cook

*ncook@radiasoft.net

October 17, 2019

2019 ATF Science Planning Workshop

Collaborative efforts in accelerator modeling

Collaborations –

MHD: N. Cook & J. Carlsson (RadiaSoft), P. Tzeferacos (Chicago)

Plasma: D. Bruhwiler, N. Cook, & S. Webb (RadiaSoft), R. Lehe, & J.-L.

Vay (LBNL)

Dielectrics: D. Bruhwiler & N. Cook (RadiaSoft),

G. Andonian (RadiaBeam), F. Oshea (Trieste)

ML: J. Edelen, N. Cook, C. Hall, S. Webb (RadiaSoft)

K. Brown, P. Dyer (BNL), A. Edelen (SLAC)

Sirepo team: R. Nagler, P. Moeller, M. Keilman & E. Carlin (RadiaSoft)

This work is supported by the SBIR program of the US Department of Energy (DOE), Office of Science under Award Nos. DE-SC0018571 (BES);

DE-SC0013855, DE-SC0017690, DE-SC0018718, and DE-SC0018719 (HEP); DE-SC0019682 (NP).

Outline

- Magnetohydrodynamics of plasma targets and lenses
 - Channel formation for laser guiding
 - Active plasma lenses
 - Target shaping for laser plasma interactions
- Laser- and Beam-driven accelerator simulations
 - Hybrid dielectric wakefield acceleration schemes
 - Modeling of advanced ionization schemes
 - Beam Plasma Interactions
- Controls Systems and Machine Learning
 - Virtual diagnostics for electron phase space tomography
 - Beamline modeling and optimization
 - Controls interface leveraging EPICS

Outline

- Magnetohydrodynamics of plasma targets and lenses
 - Channel formation for laser guiding
 - Active plasma lenses
 - Target shaping for laser plasma interactions
- Laser- and Beam-driven accelerator simulations
 - Hybrid dielectric wakefield acceleration schemes
 - Modeling of advanced ionization schemes
 - Beam Plasma Interactions
- Controls Systems and Machine Learning
 - Virtual diagnostics for electron phase space tomography
 - Beamline modeling and optimization
 - Controls interface leveraging EPICS

Discharge capillary plasmas enable advanced concepts

Guiding of intense pulses:

- Generate parabolic plasma channel along capillary
- Maintain laser spot over long distances

Phys. Rev. Lett. 122, 084801 (2019)

Beam transport, focusing, and staging:

- Produce time-dependent azimuthal magnetic field across capillary cross-section
- kT/m gradients achievable

Deconstructing a Capillary Discharge Plasma

Gas out

Gas in

Sapphire plates

- Narrow insulating tube with controlled gas flow
 - Hydrogen, Helium, Argon
 - Length from ~1-30 cm
 Radius from ~0.1-1 mm
- Applied voltage drives discharge
 - Vary density, voltage to adjust
 Many computational Complexities

 Figure Credit: Jens Osterhoff
 - High Aspect Ratio
 - High temporal resolution required
 - Transport timescales (0.01-10 ps) are small compared to discharge (>100 ns)

 $\leq 30 \,\mathrm{kV}$

- Magnetic field effects require explicit integration
- Time Dependent boundaries require special treatment
 - Discharge representation influences choice of boundary conditions
 - Electrical and Thermal conductivities must change self-consistently

Gas out

Magnetohydrodynamics modeling with FLASH

- Uniform, block-structured grid
 - AMR with user-specified refinement
 - Cartesian, Spherical, Cylindrical, Polar
- Solves 3T fluid evolution with convection

$$\frac{\frac{\partial}{\partial t}(\rho e_{i}) + \nabla \cdot (\rho e_{i} \boldsymbol{v}) + P_{i} \nabla \cdot \boldsymbol{v} = \rho \frac{c_{v,e}}{\tau_{ei}} (T_{e} - T_{i})}{\frac{\partial}{\partial t}(\rho e_{e}) + \nabla \cdot (\rho e_{e} \boldsymbol{v}) + P_{e} \nabla \cdot \boldsymbol{v} = \rho \frac{c_{v,e}}{\tau_{ei}} (T_{i} - T_{e}) - \nabla \cdot \boldsymbol{q}_{e} + Q_{abs} - Q_{emis} + Q_{las}}{\frac{\partial}{\partial t} (\rho e_{r}) + \nabla \cdot (\rho e_{r} \boldsymbol{v}) + P_{r} \nabla \cdot \boldsymbol{v} = \nabla \cdot \boldsymbol{q}_{r} - Q_{abs} + Q_{emis}}$$

Dissipation via conduction and heat exchange

$$\frac{\partial e_{\rm e}}{\partial t} = \nabla \cdot K_{\rm e} \nabla T_{\rm e} \qquad \frac{\frac{\partial e_{\rm i}}{\partial t} = \frac{c_{v,\rm e}}{\tau_{ei}} (T_{\rm e} - T_{\rm i})}{\frac{\partial e_{\rm e}}{\partial t} = \frac{c_{v,\rm e}}{\tau_{ei}} (T_{\rm i} - T_{\rm e})}$$

 Spitzer model describes plasma resistivity (and thermal conduction)

$$\eta_{\perp} = \frac{4\sqrt{2\pi}}{3} \frac{Ze^2 m_e^{1/2} \ln \Lambda}{(4\pi\epsilon_0)^2 (k_B T_e)^{3/2}} F(Z)$$

- Electromagnetic fields defined on a Yee mesh
 - Secondary, uniform mesh overlapping fluid domain
 - Divergence-free condition enforced
 - Explicit integration scheme

Capillary Benchmark Simulations in R-Z

- Phase I: Uniform Ohmic heating
 - Rising, linear magnetic field profile
- Phase II: Conductive cooling at wall
 - Nearly total ionization of gas
- Phase III: Steady state channeling
 - Cooling at channel wall balances Ohmic heating along central axis
 - Parabolic channel formation due to thermal redistribution

80000

70000

60000

40000

30000

20000

10000

250

∑ 50000 ⊢ 50 ns

110 ns

350 ns

50

100

r [µm]

150

50 ns

110 ns

350 ns

3.5

100

150

200

50 ns

350 ns

50

0.30

0.25

0.20

0.10

0.05

0.00

Modeling sub-channel formation via laser "heater"

- Proof of principle studies of laser deposition in pre-formed channel
 - Gaussian laser, $\lambda_R \gg L_Z$ produces collisional heating
- For large pulse energies (~1 J), significant channeling observed, even at large background densities
 - $-\rho = 8 \times 10^{17} \text{ cm}^{-3} \rightarrow \rho = 4 \times 10^{17} \text{ cm}^{-3}$, reduction of spot size from 75 to <50 micron
 - Density reduction scales laser intensity

Capturing Nonlinear Current Distributions

- Experimentally observed nonlinearities in field reproduced by simulations
 - Temperature deviation drives current deviation*

$$J(r) \propto T_e(r)^{3/2}$$

*PRAB 20, 032803 (2017)

- Timescale of deviation from linearity is a function of mass
 - ex. Argon maintains linear profile after 150 ns, whereas Hydrogen evolves

Optical plasma shaping for LPA targets

Laser deposition with pre-pulse for flexible target shaping

Symmetric, robust, reproducible density profile

$$\frac{n}{n_0} = \frac{\gamma + 1}{\gamma - 1} \quad \gamma \approx 1.3 - 1.4$$

 Controllable via pulse energy, timing, focal position

Hydrodynamic modeling guides choice of parameters!

O. Tresca et al., *PRL.*, **115**, 094802, (2015).

N.P. Dover et al., J. Plasma Phys., 82, 415820101 (2016).

Applications for electron and ion acceleration schemes

- Ions: Localize energy deposition
- Electrons: Localize injection

Complementary to existing schemes (knife edge, gas jet, dual reservoir)

Summary of MHD applications

Modern plasma technologies can benefit from MHD modeling

- 1. Aberration free active plasma lenses for beam transport
 - Coupling of low-emittance LWFA beams to diagnostics, or for staging
 - Choice of gas, discharge current, determine field strength and uniformity
- 2. Plasma channel formation for laser guiding
 - Parabolic channel formation for a range of central densities
 - Laser "heater" for sub-channel formation enables small matched spot
- 3. Optical shaping of gas jets for laser plasma interactions
 - Generation of narrow density spike through controlled pre-pulse
 - Viable for over-dense interactions as well as localized injection schemes

We are actively developing MHD tools using the open-source FLASH code to support design and simulation of capillary systems

- Continuing benchmark studies of capillary systems
- Cloud-based UI for FLASH is in development

Outline

- Magnetohydrodynamics of plasma targets and lenses
 - Channel formation for laser guiding
 - Active plasma lenses
 - Target shaping for laser plasma interactions
- Laser- and Beam-driven accelerator simulations
 - Hybrid dielectric wakefield acceleration schemes
 - Modeling of advanced ionization schemes
 - Beam Plasma Interactions
- Controls Systems and Machine Learning
 - Virtual diagnostics for electron phase space tomography
 - Beamline modeling and optimization
 - Controls interface leveraging EPICS

Modeling Dielectric and Hybrid Wakefield Accelerators

Structure-based acceleration for hybrid accelerator schemes

Relaxed synchronization and trapping requirements

PIC simulations are well suited to capture physics of such systems

Large scale-length disparities between beam and structure are challenging

0.20

Modeling Novel Ionization Schemes

SSTF technique for plasma photocathode

- Spatial and temporal chirp enable narrow region of peak intensity
- Superposition of Gaussian beamlets, spatially separated according to central frequency

Simulation is challenging

 Multiple antennae, small resolution, good numerical dispersion are required

Resort to analytical propagation

Fast, high resolution, but not self-consistent

input pulse, a₀~0.02

FBPIC - A Fourier-Bessel PSATD PIC Code

PSATD Algorithm presents unique advantages

- Sources deposited in Cartesian, gridded real space
- Apply Hankel transform to a Fourier-Bessel eigenmode basis
- Eigenmodes are analytically advanced
 - No numerical Cherenkov
 - No numerical dispersion
- For more details:

Comp. Phys. Comm. **203**, 66–82, 0010-4655 (2016).

FBPIC Implementation permits fast prototyping

- Python interface accelerated using Numba JIT compiler
- GPU implementation of all major features
- Open source, available at: https://github.com/fbpic/fbpic
- Also available at https://jupyter.radiasoft.org

Calculation of Wake Functions from Loaded PWFA

Calculation of m = 0 wake from FBPIC simulation

- Perform baseline simulation with driver + witness bunch
- Introduce short, low-charge test bunch
- The difference in fields is a product of the wake functions

Promising PIC applications for ATF

- Modeling structure-based acceleration is resource intensive
 - Length-scale disparity between structure and beam is a boon for experiment, but a blight for simulations
 - Emphasize the adoption of novel techniques/architectures for speed
 - Spectral solvers, Lorentz boosted frame, mesh refinement
 - Conformal geometries may require development
- New ionization and injection schemes may require novel simulation tools
 - Analytical laser propagation coupled to plasma
 - Low density operation improves fidelity of this approach
- Spectral or pseudo-spectral algorithms improve LPA fidelity
 - Fast, low noise, free of numerical artifacts
 - Ideal for long timescale simulations
 - Compute subtle witness beam effects

Outline

- Magnetohydrodynamics of plasma targets and lenses
 - Channel formation for laser guiding
 - Active plasma lenses
 - Target shaping for laser plasma interactions
- Laser- and Beam-driven accelerator simulations
 - Hybrid dielectric wakefield acceleration schemes
 - Modeling of advanced ionization schemes
 - Beam Plasma Interactions
- Controls Systems and Machine Learning
 - Virtual diagnostics for electron phase space tomography
 - Beamline modeling and optimization
 - Controls interface leveraging EPICS

19/24

Virtual Diagnostics for electron beam tomography

Virtual diagnostics emulate challenging and destructive measurements

- Simulation provides the bulk of training set
- Leverage a small number of measurements to obtain good agreement
- Example 1: Predict emittance from FAST photoinjector
 - Sample solenoid strength and gun phase
 - Determine downstream σ_{ii} from upstream conditions
- Example 2: Evaluate longitudinal phase space from LEA beamline
 - Performance of TESSA undulator is sensitive to subtle variations resulting from CSR, wake fields, and longitudinal space charge
 - Couple simulations and intercepting diagnostics to train model for use during TESSA operation

Duris et al., New J. Phys. 17, 063036 (2015).

Amplified

output pulse

Decelerated e-beam

available

Beam steering in the BNL ATR with Machine Learning

Neural-Network Inputs (BPMs and Initial Offsets)

Neural-Network Outputs (corrector settings)

Neural-Network Performance on the Validation set

Top: Initial beam trajectory and final beam trajectory using Nelder-Mead optimization on 23 correctors (2500 steps)

Bottom: Initial and final beam trajectory using inverse model (1 step)

Z

V centroid

Web-based controls toolkit for accelerators

- Interface between machine controls, simulation, and analysis
- Deployed as a Python module for seamless workflow

- Display machine settings, beam position, and relevant history
- Toggle diagnostics an corrector settings
- Integration with machine learning, optimization

Opportunities for Machine Learning at ATF

- Beam (and laser) phase space reconstruction
 - Diagnose photocathode phase errors
 - Reduce TCAV duty cycle for streak measurements
 - Improve M² measurement procedure
- Beamline tuning for fast reconfiguration
 - Develop online models for tuning parameters
 - Adjust laser parameters in response to environment
- Augment diagnostics laser-accelerated particle beams
 - Virtual interferogram for plasma density diagnostics
 - Reduce demands on probe pulse repetition rate, synchronization
 - Plasma temperature diagnostics
 - Reconstruct laser absorption with non-intercepting diagnostics

Many of these codes are accessible through Sirepo

- Sirepo is a cloud-based platform for scientific computing
- Supported Codes include:
 - Particle Tracking: elegant, Synergia, Zgoubi,
 - Radiation: SRW (Synchrotron Radiation Workshop)
 - <u>Particle-in-cell</u>: Warp (Vacuum Nanoelectronic Devices + Plasma-Based Accelerators)
 - Electron Cooling: JSPEC

Advantages:

- No installation required
- Share you work with a simple link
- Archive and save simulations online
- Export files for command-line execution
- Try it out at https://sirepo.com/

